lib25519 draws on many previous implementations listed below, plus new speedups from Kaushik Nath and new infrastructure work and factoring from Daniel J. Bernstein. Nath's work on this project was [initially funded](https://nlnet.nl/project/lib25519) through the [Internet Hardening Fund](https://nlnet.nl/internethardening), a fund established by [NLnet](https://nlnet.nl/) with financial support from the [Netherlands Ministry of Economic Affairs and Climate Policy](https://www.rijksoverheid.nl/ministeries/ministerie-van-economische-zaken-en-klimaat), and received [further funding](https://nlnet.nl/project/lib25519-ARM/) through the [NGI0 Entrust Fund](https://nlnet.nl/entrust), another fund from NLnet established with financial support from the European Commission's [Next Generation Internet](https://ngi.eu) program. Some code was originally copied from public-domain code in the SUPERCOP benchmarking framework. See for SUPERCOP releases. The following small changes from code available in SUPERCOP are made in lib25519 without further comment: * Returning `void` rather than `int` for functions that never fail in lib25519. * Message lengths `long long` rather than `unsigned long long`. * Defining various constants in `.c` files (to simplify PIC handling) instead of `.S` files. * Moving some C files to `shared-*.c` (which in lib25519 means that these files are compiled by only one compiler). * Using `CRYPTO_SHARED_NAMESPACE` rather than `CRYPTO_NAMESPACE` for symbols defined in `*.S` and `shared-*.c`. * Adding various `linker define` and `linker use` lines. Larger changes from code in SUPERCOP, such as new code divisions across lib25519 primitives, are indicated below. Sources of Curve25519 software (this is not a comprehensive list, just the software that lib25519 is derived from): * Daniel J. Bernstein. "Curve25519: new Diffie-Hellman speed records." Pages 207–228 in Public key cryptography—PKC 2006, 9th international conference on theory and practice in public-key cryptography, New York, NY, USA, April 24–26, 2006, proceedings, edited by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin, Lecture Notes in Computer Science 3958, Springer, 2006, ISBN 3-540-33851-9. This is the source of the Curve25519 design, the X25519 design, and various speedups. Most of the software from that paper is specific to a variety of 32-bit platforms (radix 2^25.5^ or radix 2^21.25^), but the portable `supercop/crypto_scalarmult/curve25519/ref10` (radix 2^25.5^) is derived from this. `lib25519/crypto_nP/montgomery25519/ref10` starts with `supercop/crypto_scalarmult/curve25519/ref10`, and tweaks the API to provide `crypto_nP` instead of `crypto_scalarmult`. Inversion is factored out, producing `crypto_pow/inv25519/ref10`. The trivial `crypto_scalarmult_base` wrapper is factored out, producing `crypto_nG/montgomery25519/ref/base.c`; lib25519 has faster `nG` functions, but intentionally provides `ref` for situations where speed is outweighed by simplicity, assurance, code size, etc. * `supercop/crypto_scalarmult/curve25519/donna_c64` (radix 2^51^) from Adam Langley. `lib25519/crypto_nP/montgomery25519/donna_c64` starts from this and tweaks the API to provide `crypto_nP` instead of `crypto_scalarmult` (and removes `crypto_scalarmult_base`). `crypto_pow/inv25519/donna_c64` is factored out. * Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang. "High-speed high-security signatures." Pages 124–142 in Cryptographic hardware and embedded systems—CHES 2011, 13th international workshop, Nara, Japan, September 28–October 1, 2011, proceedings, edited by Bart Preneel, Tsuyoshi Takagi, Lecture Notes in Computer Science 6917, Springer, 2011, ISBN 978-3-642-23950-2. Journal version: Journal of Cryptographic Engineering 2 (2012), 77–89. This is the source of the Ed25519 design and various X25519/Ed25519 speedups for 64-bit Intel/AMD platforms, in particular producing `supercop/crypto_{scalarmult/curve,sign/ed}25519/amd64-{51,64}*` (radix 2^51^ and radix 2^64^ respectively). Peter Schwabe led the implementation work. `lib25519/crypto_nP/montgomery25519/amd64-51` starts from `supercop/crypto_scalarmult/curve25519/amd64-51` and tweaks the API to provide `crypto_nP` instead of `crypto_scalarmult` (and removes `crypto_scalarmult_base`). `crypto_nG/merged25519/amd64-51` (for fixed-base-point multiplication), `crypto_mGnP/ed25519/amd64-51` (for double-scalar multiplication), and `crypto_sign/ed25519/amd64` (for the remaining signing components) factor `supercop/crypto_sign/ed25519/amd64-51` into smaller pieces. `crypto_pow/inv25519/amd64-51` is also factored out. `SMALLTABLES` support is removed. Support for batch verification is removed, although it could reappear in a subsequent lib25519 release. Similar comments apply to `amd64-64` and `ref10`. A compiler warning is eliminated (window size 64 in `amd64-64-24k/sc25519.h`). * Tung Chou. "Sandy2x: New Curve25519 Speed Records." SAC 2015. This is the source of various X25519 speedups using 256-bit vector instructions, specifically AVX vector instructions in Intel's Sandy Bridge, in particular producing `supercop/crypto_scalarmult/curve25519/sandy2x` (radix 2^25.5^). `lib25519/crypto_{nP,nG}/montgomery25519/sandy2x` start from `supercop/crypto_scalarmult/curve25519/sandy2x`, and tweak the API to provide `crypto_nP` and `crypto_nG` instead of `crypto_scalarmult` and `crypto_scalarmult_base` respectively. The top bit of the incoming point is cleared. `crypto_pow/inv25519/sandy2x` is factored out. * Kaushik Nath and Palash Sarkar, "Efficient arithmetic in (pseudo-)Mersenne prime order fields", Advances in Mathematics of Communications 16 (2022), pages 303–348. Original release: - - The `SL` software is the source of various speedups to the `amd64-64` software, producing the `maa4` versions of `fe25519_mul.S`, `fe25519_square.S`, and `fe25519_nsquare.S`. These `.S` files are used inside the following lib25519 directories: - `crypto_mGnP/ed25519/amd64-avx2-10l-maa4` - `crypto_mGnP/ed25519/amd64-avx2-9l-maa4` - `crypto_mGnP/ed25519/amd64-maa4` - `crypto_nG/merged25519/amd64-avx2-10l-maa4` - `crypto_nG/merged25519/amd64-avx2-9l-maa4` - `crypto_nG/merged25519/amd64-maa4` - `crypto_nP/montgomery25519/amd64-avx2-hey10l-maa4` - `crypto_nP/montgomery25519/amd64-avx2-hey9l-maa4` - `crypto_nP/montgomery25519/amd64-avx2-ns10l-maa4` - `crypto_nP/montgomery25519/amd64-avx2-ns9l-maa4` - `crypto_nP/montgomery25519/amd64-maa4` - `crypto_pow/inv25519/amd64-maa4` The `USL` software is the source of various speedups to the `amd64-51` software, producing the `maa5` versions of `fe25519_mul.S` and `fe25519_nsquare.S`. These `.S` files are used inside the following lib25519 directories: - `crypto_nP/montgomery25519/amd64-avx2-hey10l-maa5` - `crypto_nP/montgomery25519/amd64-avx2-hey9l-maa5` - `crypto_nP/montgomery25519/amd64-avx2-ns10l-maa5` - `crypto_nP/montgomery25519/amd64-avx2-ns9l-maa5` - `crypto_pow/inv25519/amd64-maa5` * Kaushik Nath and Palash Sarkar, "Security and efficiency trade-offs for elliptic curve Diffie-Hellman at the 128-bit and 224-bit security levels." J. Cryptogr. Eng. 12(1): 107-121 (2022). Original release: - - This `mxaa-4limb` software is the source of various speedups to `maa4` on CPUs supporting BMI2 instructions (e.g., Intel Haswell from 2013), in particular producing the `mxaa` versions of `fe25519_mul.S` and `fe25519_nsquare.S`. These `.S` files are used inside the following lib25519 directories: - `crypto_mGnP/ed25519/amd64-avx2-10l-mxaa` - `crypto_mGnP/ed25519/amd64-avx2-9l-mxaa` - `crypto_mGnP/ed25519/amd64-mxaa` - `crypto_nG/merged25519/amd64-avx2-10l-mxaa` - `crypto_nG/merged25519/amd64-avx2-9l-mxaa` - `crypto_nG/merged25519/amd64-mxaa` - `crypto_nP/montgomery25519/amd64-avx2-hey10l-mxaa` - `crypto_nP/montgomery25519/amd64-avx2-hey9l-mxaa` - `crypto_nP/montgomery25519/amd64-avx2-ns10l-mxaa` - `crypto_nP/montgomery25519/amd64-avx2-ns9l-mxaa` - `crypto_nP/montgomery25519/amd64-mxaa` - `crypto_pow/inv25519/amd64-mxaa` This software is also the source of the following three different Montgomery-ladder functions, where the third also builds on the `maax` work listed below: - `crypto_nP/montgomery25519/amd64-maa4/mladder.S` - `crypto_nP/montgomery25519/amd64-mxaa/mladder.S` - `crypto_nP/montgomery25519/amd64-maax/mladder.S` * Kaushik Nath and Palash Sarkar, "Efficient arithmetic in (pseudo-)Mersenne prime order fields", Advances in Mathematics of Communications 16 (2022), pages 303–348. Original release: - This is the source of various speedups to `mxaa` on CPUs that also support ADX instructions (e.g., Intel Broadwell from 2014), in particular producing the `maax` versions of `fe25519_mul.S`, `fe25519_square.S`, and `fe25519_nsquare.S`. These `.S` files are used inside the following lib25519 directories: - `crypto_mGnP/ed25519/amd64-avx2-10l-maax` - `crypto_mGnP/ed25519/amd64-avx2-9l-maax` - `crypto_mGnP/ed25519/amd64-avx512ifma-5l-maax` - `crypto_mGnP/ed25519/amd64-maax` - `crypto_nG/merged25519/amd64-avx2-10l-maax` - `crypto_nG/merged25519/amd64-avx2-9l-maax` - `crypto_nG/merged25519/amd64-avx512ifma-5l-maax` - `crypto_nG/merged25519/amd64-maax` - `crypto_nP/montgomery25519/amd64-avx2-hey10l-maax` - `crypto_nP/montgomery25519/amd64-avx2-hey9l-maax` - `crypto_nP/montgomery25519/amd64-avx2-ns10l-maax` - `crypto_nP/montgomery25519/amd64-avx2-ns9l-maax` - `crypto_nP/montgomery25519/amd64-avx512-hey10l-maax` - `crypto_nP/montgomery25519/amd64-avx512-hey9l-maax` - `crypto_nP/montgomery25519/amd64-avx512-ns10l-maax` - `crypto_nP/montgomery25519/amd64-avx512-ns9l-maax` - `crypto_nP/montgomery25519/amd64-avx512ifma-hey5l-maax` - `crypto_nP/montgomery25519/amd64-avx512ifma-ns5l-maax` - `crypto_nP/montgomery25519/amd64-maax` - `crypto_pow/inv25519/amd64-maax` * Kaushik Nath and Palash Sarkar, "Efficient 4-Way Vectorizations of the Montgomery Ladder". IEEE Trans. Computers 71(3): 712-723 (2022). Original release: - This is the source of the `hey10l` (radix 2^25.5^), `hey9l` (radix 2^29^), `ns10l` (radix 2^25.5^), and `ns9l` (radix 2^29^) versions of `mladder.S` for CPUs that also support 256-bit AVX2 instructions (e.g., Intel Haswell from 2013). In lib25519, these four `.S` files are used in 16 directories: - `crypto_nP/montgomery25519/amd64-avx2-hey10l-{maa4,maa5,maax,mxaa}` - `crypto_nP/montgomery25519/amd64-avx2-hey9l-{maa4,maa5,maax,mxaa}` - `crypto_nP/montgomery25519/amd64-avx2-ns10l-{maa4,maa5,maax,mxaa}` - `crypto_nP/montgomery25519/amd64-avx2-ns9l-{maa4,maa5,maax,mxaa}` * Kaushik Nath, new Montgomery-ladder code new in lib25519 (no paper yet) for CPUs supporting AVX-512 instructions (e.g., Intel Skylake-X from 2017). These are seven files in lib25519: - `crypto_nP/montgomery25519/amd64-avx512-hey10l-maax` - `crypto_nP/montgomery25519/amd64-avx512-hey9l-maax` - `crypto_nP/montgomery25519/amd64-avx512-ns10l-maax` - `crypto_nP/montgomery25519/amd64-avx512-ns9l-maax` - `crypto_nP/montgomery25519/amd64-avx512ifma-hey5l-maax` - `crypto_nP/montgomery25519/amd64-avx512ifma-ns5l-maax` - `crypto_nP/montgomery25519/amd64-avx512-8x1-ns10l-maax` * Kaushik Nath, three versions of Montgomery ladder code new in lib25519 (no paper yet) for various AMD64 architectures. These ladders are optimized versions of the software available at - `crypto_nP/montgomery25519/amd64-maa4/mladder.S` - `crypto_nP/montgomery25519/amd64-maax/mladder.S` - `crypto_nP/montgomery25519/amd64-mxaa/mladder.S` * Kaushik Nath, two versions of Montgomery ladder code new in lib25519 (no paper yet) for ARM64 CPUs: - `crypto_nP/montgomery25519/arm64-maa4-{intmul,redmul}/mladder.S` * Kaushik Nath, twelve versions of fixed-base-point scalar-multiplication code new in lib25519 (no paper yet) for various platforms: - `crypto_nG/merged25519/amd64-avx2-10l-maa4/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx2-10l-maax/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx2-10l-mxaa/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx2-9l-maa4/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx2-9l-maax/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx2-9l-mxaa/ge25519_base.S` - `crypto_nG/merged25519/amd64-avx512ifma-5l-maax/ge25519_base.S` - `crypto_nG/merged25519/amd64-maa4/ge25519_base.S` - `crypto_nG/merged25519/amd64-maax/ge25519_base.S` - `crypto_nG/merged25519/amd64-mxaa/ge25519_base.S` - `crypto_nG/merged25519/arm64-maa4-intmul/ge25519_base.S` - `crypto_nG/merged25519/arm64-maa4-redmul/ge25519_base.S` * Kaushik Nath, twelve versions of double-scalar-multiplication code new in lib25519 (no paper yet) for various platforms. Each version has `precompute.S` and `process.S`: - `crypto_mGnP/ed25519/amd64-avx2-10l-maa4/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-10l-maax/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-10l-mxaa/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-maa4/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-maax/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-mxaa/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx512ifma-5l-maax/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-maa4/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-maax/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-mxaa/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/amd64-avx2-10l-maa4/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx2-10l-maax/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx2-10l-mxaa/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-maa4/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-maax/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx2-9l-mxaa/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-avx512ifma-5l-maax/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-maa4/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-maax/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/amd64-mxaa/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/arm64-maa4-intmul/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/arm64-maa4-intmul/ge25519_double_scalarmult_process.S` - `crypto_mGnP/ed25519/arm64-maa4-redmul/ge25519_double_scalarmult_precompute.S` - `crypto_mGnP/ed25519/arm64-maa4-redmul/ge25519_double_scalarmult_process.S` * Kaushik Nath, nine versions of batch scalar-multiplication code new in lib25519 (no paper yet) for various platforms. - `crypto_nPbatch/montgomery25519/amd64-avx2-4x1-9l-{maa4,maa5,maax,mxaa}` - `crypto_nPbatch/montgomery25519/amd64-avx2-4x1-10l-{maa4,maa5,maax,mxaa}` - `crypto_nPbatch/montgomery25519/amd64-avx512ifma-8x1` * Kaushik Nath, ten versions of multi scalar-multiplication code new in lib25519 (no paper yet) for various platforms. Each version has `precompute.S` and `process.S`. Additionally, the `amd64-{maa4,maax,mxaa}` and `arm64-maa4-{intmul,redmul}` versions have `p1p1_to_p2.S`: - `crypto_multiscalar/ed25519/amd64-{maa4,maax,mxaa}` - `crypto_multiscalar/ed25519/amd64-{maa4,maax,mxaa}-p3` - `crypto_multiscalar/ed25519/arm64-maa4-{intmul,redmul}` - `crypto_multiscalar/ed25519/arm64-maa4-{intmul,redmul}-p3` Almost all of the `crypto_pow/inv25519` implementations use exponentiation, but there is also a different implementation from the following source: * Daniel J. Bernstein, Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." IACR Transactions on Cryptographic Hardware and Embedded Systems 2019 issue 3 (2019), 340–398. This is the source of the "safegcd" algorithm and software. Further speedups (no paper yet; ideas from Peter Dettman, Gregory Maxwell, and Pieter Wuille) have produced the "inverse25519skylake" software available here: `lib25519/crypto_pow/inv25519/amd64-safegcd` is inverse25519skylake, tweaked to provide the `crypto_pow` API and to clear the top bit of the input. For lower-layer SHA-512 functions: * Daniel J. Bernstein, `supercop/crypto_hash*/sha512/*`. In lib25519, some unused variables are removed in `crypto_hashblocks/sha512/avx` to eliminate compiler warnings. Most of the lib25519 infrastructure, such as the run-time implementation selector automatically guided by CPU type and previous benchmarks, is new in lib25519 from Daniel J. Bernstein. Portions of `autogen/speed` (generating `lib25519-speed.c`) and `autogen/test` (generating `lib25519-test.c`) are based on benchmarking software and test software in SUPERCOP by Daniel J. Bernstein. The symmetric-cryptography code for generating pseudorandom test inputs and hashing test outputs is adapted from TweetNaCl, a library by Daniel J. Bernstein, Wesley Janssen, Tanja Lange, and Peter Schwabe.